Self-Concordant Barriers for Convex Approximations of Structured Convex Sets

نویسندگان

  • Levent Tunçel
  • Arkadi Nemirovski
چکیده

We show how to approximate the feasible region of structured convex optimization problems by a family of convex sets with explicitly given and efficient (if the accuracy of the approximation is moderate) self-concordant barriers. This approach extends the reach of the modern theory of interior-point methods, and lays the foundation for new ways to treat structured convex optimization problems with a very large number of constraints. Moreover, our approach provides a strong connection from the theory of self-concordant barriers to the combinatorial optimization literature on solving packing and covering problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constructing self-concordant barriers for convex cones

In this paper we develop a technique for constructing self-concordant barriers for convex cones. We start from a simple proof for a variant of standard result [1] on transformation of a ν-self-concordant barrier for a set into a self-concordant barrier for its conic hull with parameter (3.08 √ ν + 3.57)2. Further, we develop a convenient composition theorem for constructing barriers directly fo...

متن کامل

Improving complexity of structured convex optimization problems using self-concordant barriers

The purpose of this paper is to provide improved complexity results for several classes of structured convex optimization problems using to the theory of self-concordant functions developed in [11]. We describe the classical short-step interior-point method and optimize its parameters in order to provide the best possible iteration bound. We also discuss the necessity of introducing two paramet...

متن کامل

On Conically Ordered Convex Programs

In this paper we study a special class of convex optimization problems called conically ordered convex programs (COCP), where the feasible region is given as the level set of a vector-valued nonlinear mapping, expressed as a nonnegative combination of convex functions. The nonnegativity of the vectors is defined using a pre-described conic ordering. The new model extends the ordinary convex pro...

متن کامل

Composite Convex Minimization Involving Self-concordant-Like Cost Functions

The self-concordant-like property of a smooth convex function is a new analytical structure that generalizes the self-concordant notion. While a wide variety of important applications feature the selfconcordant-like property, this concept has heretofore remained unexploited in convex optimization. To this end, we develop a variable metric framework of minimizing the sum of a “simple” convex fun...

متن کامل

Functionally closed sets and functionally convex sets in real Banach spaces

‎Let $X$ be a real normed  space, then  $C(subseteq X)$  is  functionally  convex  (briefly, $F$-convex), if  $T(C)subseteq Bbb R $ is  convex for all bounded linear transformations $Tin B(X,R)$; and $K(subseteq X)$  is  functionally   closed (briefly, $F$-closed), if  $T(K)subseteq Bbb R $ is  closed  for all bounded linear transformations $Tin B(X,R)$. We improve the    Krein-Milman theorem  ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Foundations of Computational Mathematics

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2010